What's the advantage of two z motors nema stepper motor 34?


What's the advantage of two z motors nema stepper motor 34?

here are three main options here for Mendel style ZX gantries:

  • One Z screw and motor, which is similar to a cantilevered design but somewhat more stable because of the opposite smooth rod
  • Two Z screws and two motors
  • Two Z screws and one motor, with belt synchronization of the two sides

Of all of these, running two screws off one motor is clearly superior in reliability and user-friendliness. There is no risk of the two sides of the Z stage going out of sync. One motor running at higher current will generally out-perform two motors splitting one driver's current via parallel wiring, because one motor with twice the torque can push much harder when one side of the gantry binds up or hits a rough spot.

The only real downside to the single motor, double screw approach is that it requires more engineering and parts. A closed-loop timing belt must be run between the two screws, with associated pulleys, tensioner, and support bearings. In comparison, using a separate motor for each screw is very simple. It adds a stepper and a shaft coupler, but saves a lot of vitamins and design complexity.

Two-motor, two-screw solutions are lower-cost and simpler to design. That's why they're used. End of story.

One-motor, one-screw Mendel style printers are quite rare. The passive side of the Z mechanism does add a little bit of stability to the X stage, but not a lot. It's possible to rack the X stage out of square with the bed and bind up the gantry. In order to work at all, they require a very wide/tall bearing footprint on the driven side to resist torque exerted on the driven side by the weight of the X stage and extruder carriage. So it's true that they don't have synchronization issues, but additional design challenges and undesirable flexure modes are introduced. It's much more common for one-screw designs to simply cantilever out the X stage, like a SmartRap or Printrbot Simple.

Cloudray Stepper Motor Series has set the standard for quality, reliability, and durability in stepping motors. The precision of our Torque Power motors is matched only by the dependability of their performance. All Torque Power motors are bi-directional and totally enclosed with permanently lubricated ball bearings for long-lasting, smooth operation.

High Torque, High Precision and Long life is Cloudray's core advantage


Low vibration,Low heating, No loss of step
Fast Response,Better Acceleration Performance
Thanks to a robust design they can be selected for the harshest environments. Precise, open-loop, speed and position control can be achieved with the application of full step, half step, or microstepping electronics.

Higher Resolution,Avoidance of Resonance Regions
Stepping angle is adjustable( rang in 18°±5%), 0.9 °stepper motor's stepping angle is smaller, fineness is higher and positioning is more accurate.Avoiding vibration,runs more smoothly and gets lower noise.

Sturdy structure, extremely long life
High quality materials including bearings and shaft made in Japan
Robust assembly, high speed range, and exceptional performance in even the harshest environments make Cloudray Stepper Motors the perfect solution for demanding positioning applications.

Short length and light weight allow them to be used in highly integrated systems

Cloudray stepper motor factory video
Stepper motor application
Cloudray stepper motor and Stepping Motor Driver are widely used in engraving machine, cutting plotter, textile machine, 3D printer, medical devices,stage lighting equipment, robot, CNC machine, music fountain and other industrial automatic equipment.

Leave a comment

All blog comments are checked prior to publishing
You have successfully subscribed!